
MySQL Insights:
Tips, Tricks &
Advanced Topics

JSON_TABLE function in MySQL

JSON_TABLE in a nutshell
Best Practices for Using JSON_TABLE in MySQL
Performance Tuning for JSON_TABLE Queries

JSON path expressions in MySQL

Understanding JSON Path Syntax and Filters
Working with Arrays and Recursive Queries
Advanced Pattern Matching and Handling Nulls
Combining Expressions and Performance Optimization

JSON_TABLE function in
MySQL

JSON_TABLE function in MySQL

JSON_TABLE in a nutshell
Unpacking JSON data in MySQL.

Introduction to JSON_TABLE
The JSON_TABLE function in MySQL is a powerful tool that allows you to transform JSON
data into a tabular format. This is particularly useful when you need to query or
manipulate JSON data as if it were part of a standard relational table. With JSON
becoming a common data format for APIs and NoSQL-like storage, the ability to
integrate it seamlessly into MySQL queries is essential for modern database
management.

Key Benefits of JSON_TABLE:
It converts hierarchical JSON data into rows and columns, making it easier to
handle within SQL queries.
Allows for complex JSON structures, including nested objects and arrays, to be
flattened and queried using standard SQL techniques.
It works well in combination with other MySQL features such as joins, filters,
and aggregations, enabling advanced data analysis.

In short, JSON_TABLE bridges the gap between structured relational data and flexible
JSON formats, allowing developers to work with JSON data in a familiar SQL
environment.

This section will explore how JSON_TABLE works, its syntax, and how to use it
effectively in real-world scenarios.

Syntax of JSON_TABLE
The JSON_TABLE function in MySQL follows a structured syntax that defines how JSON
data should be extracted and mapped to relational table columns. Understanding the
syntax is crucial for effectively transforming and querying JSON data.

In this example:

The JSON array contains two objects, each with an id and name .
JSON_TABLE transforms this into a relational table with two columns (user_id ,
user_name) by mapping the JSON keys id and name to the respective columns.

This section provides the foundation for understanding how JSON_TABLE operates by
mapping JSON structures to relational table formats, preparing for more advanced use
cases in the following sections.

Defining JSON Path Expressions
In the context of JSON_TABLE , JSON path expressions are used to navigate and
extract specific parts of a JSON document. These path expressions follow a structured
format that allows you to drill down into complex JSON objects and arrays, making it
easier to map JSON data into relational columns.

Understanding JSON Path Expressions:
Root ($):

The JSON path starts with a $, representing the root of the JSON
document. From here, you can navigate to specific keys or elements.

Dot Notation (.):

SELECT *
FROM JSON_TABLE(
 '[{"id": 1, "name": "John"}, {"id": 2, "name": "Doe"}]',
 '$[*]'
 COLUMNS (
 user_id INT PATH '$.id',
 user_name VARCHAR(50) PATH '$.name'
)
) AS users;

Use dot notation to access keys within the JSON object. For example,
$.name extracts the value of the name key at the root level.

Array Indexing ([]):
Square brackets are used to access elements within JSON arrays. For
example, $.items[0] accesses the first element in the items array.

Wildcard (*):
A wildcard * can be used to match all elements in an array or all keys
within an object. For example, $[*] matches every element in an array,
while $.data.* matches all keys within the data object.

Common Path Expressions:
Single Key Access:

Example: For JSON {"name": "John"} , the path $.name extracts the value "John" .

Nested Key Access:

Example: For JSON {"parent": {"child": "value"}} , the path $.parent.child extracts "value" .

Array Element Access:

Example: For JSON {"array": [10, 20, 30]} , the path $.array[0] extracts the first element,
10 .

Accessing All Elements in an Array:

Example: For a JSON array [{"id": 1}, {"id": 2}] , the path $[*] will access all elements.

Using Path Expressions in JSON_TABLE:

$.key

$.parent.child

$.array[0]

$[*]

You will define these JSON path expressions in the COLUMNS clause of the JSON_TABLE
function to extract values into specific columns. Each column maps to a path
expression, ensuring the correct data is extracted from the JSON.

Explanation:

$[*] :
This matches all elements in the root JSON array.

$.id :
Extracts the id field from each object in the array.

$.name.first and $.name.last :
These paths navigate into the nested name object to extract first and last
names.

By mastering JSON path expressions, you can effectively extract data from both simple
and complex JSON structures in MySQL using JSON_TABLE . This enables you to
manipulate JSON data just like traditional relational data.

Extracting Data with JSON_TABLE
Once you've defined the JSON path expressions, the next step is to use JSON_TABLE to
extract data from your JSON document into a tabular format. This process involves

SELECT *
FROM JSON_TABLE(
 '[{"id": 1, "name": {"first": "John", "last": "Doe"}}, {"id": 2, "name": {"first": "Jane",
"last": "Smith"}}]',
 '$[*]'
 COLUMNS (
 user_id INT PATH '$.id',
 first_name VARCHAR(50) PATH '$.name.first',
 last_name VARCHAR(50) PATH '$.name.last'
)
) AS users;

mapping specific parts of the JSON data to corresponding columns in a result set. The
extracted data can then be queried and manipulated just like any other relational data
in MySQL.

Steps to Extract Data with JSON_TABLE:
1. Specify the JSON Document:

The first parameter in JSON_TABLE is the JSON document or column from
which data will be extracted. This can be:

A JSON string.
A JSON column from an existing table.
The result of a JSON-generating function (e.g., JSON_ARRAY ,
JSON_OBJECT).

2. Define the Path Expression:
The second parameter is the JSON path expression, which specifies where
in the JSON document the data is located.
Use $[*] if you want to extract data from all elements in a JSON array.

3. Map Columns to JSON Data:
In the COLUMNS clause, define how each JSON field will map to a column
in the result set.
For each column, provide:

A column name.
A data type (e.g., INT , VARCHAR , etc.).
A JSON path expression that tells MySQL where to extract the data
from the JSON.

4. Alias for the Result Table:
Give the resulting table an alias for easier reference in queries, just as you
would with any subquery or derived table in SQL.

Example 1: Extracting Simple Data

SELECT *
FROM JSON_TABLE(
 '[{"id": 1, "name": "John"}, {"id": 2, "name": "Jane"}]', -- JSON data
 '$[*]' -- Path expression for array elements
 COLUMNS (
 user_id INT PATH '$.id', -- Extracting the "id" field
 user_name VARCHAR(50) PATH '$.name' -- Extracting the "name"

Result:

user_id user_name

1 John

2 Jane

Explanation:
The JSON document is an array with two objects, each containing an id
and name .
JSON_TABLE flattens this data into a two-column table (user_id and
user_name).

Example 2: Extracting Data from Nested JSON Objects
For more complex JSON structures, such as nested objects, you can define deeper path
expressions to access the inner fields.

field
)
) AS users;

SELECT *
FROM JSON_TABLE(
 '[{"id": 1, "details": {"first_name": "John", "last_name": "Doe"}},
 {"id": 2, "details": {"first_name": "Jane", "last_name": "Smith"}}]', -- JSON with
nested objects
 '$[*]'
 COLUMNS (
 user_id INT PATH '$.id', -- Extracting the "id" field
 first_name VARCHAR(50) PATH '$.details.first_name', -- Extracting the
"first_name" from nested "details"
 last_name VARCHAR(50) PATH '$.details.last_name' -- Extracting the
"last_name" from nested "details"

Result:

user_id first_name last_name

1 John Doe

2 Jane Smith

Explanation:
The details object contains first_name and last_name , so the path
expressions $.details.first_name and $.details.last_name are used to access
these values.

Example 3: Using FOR ORDINALITY :
When dealing with JSON arrays, FOR ORDINALITY can be added to generate an
additional column that assigns a unique row number to each element of the array.

Result:

row_number item_name

1 Apple

)
) AS users;

SELECT *
FROM JSON_TABLE(
 '[{"item": "Apple"}, {"item": "Banana"}, {"item": "Orange"}]',
 '$[*]'
 COLUMNS (
 row_number FOR ORDINALITY, -- Adds row numbers
 item_name VARCHAR(50) PATH '$.item' -- Extracts item names
)
) AS fruit_list;

row_number item_name

2 Banana

3 Orange

Explanation:
FOR ORDINALITY assigns a unique number to each array element, useful for
indexing JSON array data.

Example 4: Joining JSON_TABLE Results with Other Tables
You can also join the results of JSON_TABLE with other relational tables.

Result:

user_id user_name order_id

1 Alice 101

2 Bob 102

Explanation:
This example shows how to join the extracted JSON data with an existing
orders table based on a common user ID.

SELECT u.user_id, u.user_name, o.order_id
FROM JSON_TABLE(
 '[{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]',
 '$[*]'
 COLUMNS (
 user_id INT PATH '$.id',
 user_name VARCHAR(50) PATH '$.name'
)
) AS u
JOIN orders o ON u.user_id = o.user_id; -- Assuming there’s an 'orders' table

Summary:
By extracting data with JSON_TABLE , you can flatten JSON structures, making it easier
to work with JSON data in a relational format. This approach unlocks the ability to use
standard SQL operations (e.g., joins, filters, and aggregates) on JSON data directly
within MySQL.

JSON_TABLE function in MySQL

Best Practices for Using
JSON_TABLE in MySQL
When working with JSON data in MySQL using the JSON_TABLE function, there are some
best practices to ensure efficient, maintainable, and optimized queries. These
practices help improve performance, avoid common pitfalls, and ensure the integrity
of your JSON data handling.

1. Use JSON_TABLE for Complex Queries, Not Simple Queries
When to Use:
Use JSON_TABLE when you need to extract data from deeply nested or complex
JSON structures and map them to multiple columns. For simple JSON
extractions, the JSON_EXTRACT function or other JSON utility functions may
suffice.
Example: Use JSON_EXTRACT for extracting a single field, but opt for
JSON_TABLE when you need to flatten arrays or handle multiple levels of JSON
objects.

2. Define Proper Data Types in the COLUMNS Clause
Why It Matters:
Always specify appropriate data types for each column in the COLUMNS clause
to avoid type mismatches or unexpected data conversions.
Example:

COLUMNS (
 user_id INT PATH '$.id', -- Ensures "id" is treated as an integer
 user_name VARCHAR(100) PATH '$.name' -- Ensures "name" is
treated as a string
)

3. Use FOR ORDINALITY to Generate Row Numbers for Arrays
Best Use Case:
If you’re working with JSON arrays and want to preserve their original order or
generate a unique identifier for each element, use FOR ORDINALITY . This is
especially useful when dealing with data that lacks natural primary keys or row
numbers.
Example:

COLUMNS (
 row_number FOR ORDINALITY, -- Generates a unique row number for
each array element
 item_name VARCHAR(50) PATH '$.item'
)

4. Limit the Number of Extracted Fields for Performance
Why It’s Important:
Extracting large numbers of fields from complex JSON structures can degrade
performance. If possible, limit the number of extracted columns to only those
necessary for your query.
Tip:
Avoid unnecessary nested field extractions if they aren’t required in your
immediate result set.

5. Use JSON Indexing for Faster Queries
When to Apply:
If you frequently query JSON data stored in a column, consider adding a
virtual column and indexing it for faster access. This practice helps optimize
queries that would otherwise require scanning large amounts of JSON data.
Example:
Create a virtual column from JSON data and index it:

ALTER TABLE my_table
ADD COLUMN name VARCHAR(100) AS (
 JSON_UNQUOTE(JSON_EXTRACT(json_column, '$.name'))

) VIRTUAL;
CREATE INDEX idx_name ON my_table (name);

6. Handle Missing or Null JSON Fields Gracefully
Why It’s Crucial:
JSON documents can vary in structure, and some fields may be missing or null.
Ensure that your queries handle missing or null fields without causing errors or
returning incomplete results.
Example:

COLUMNS (
 user_id INT PATH '$.id' DEFAULT 0, -- Default value if "id" is missing or
null
 user_name VARCHAR(50) PATH '$.name' DEFAULT 'Unknown'
)

7. Validate JSON Data Before Inserting
When to Use:
Ensure that the JSON you insert into the database is well-formed and valid.
This helps prevent issues when querying with JSON_TABLE . MySQL provides the
JSON_VALID() function, which checks if a string contains valid JSON.
Example:

INSERT INTO my_table (json_data)
VALUES (IF(JSON_VALID('{"key": "value"}'), '{"key": "value"}', NULL));

8. Document JSON Path Expressions in Queries
Why It’s Helpful:
JSON path expressions can be complex, and over time, it can be hard to
remember why certain paths were used. Adding comments or external
documentation for path expressions ensures that your queries remain

understandable and maintainable.
Example:

COLUMNS (
 user_id INT PATH '$.id', -- Extracts user ID from the root object
 user_name VARCHAR(50) PATH '$.name' -- Extracts user's name
)

9. Avoid Over-Reliance on JSON in Relational Databases
Best Practice:
While MySQL supports JSON, relational databases are typically better suited for
structured, tabular data. Only store JSON when the data structure is highly
dynamic or unstructured. For heavily structured data, relational tables are
often a better choice for performance and clarity.

10. Use IS NULL to Filter Missing or Null JSON Data
Why It Helps:
To filter out rows with missing or null JSON data, use IS NULL in your queries.
This helps ensure that your result set only includes rows with valid JSON data
in the fields of interest.
Example:

SELECT *
FROM JSON_TABLE(
 '[{"id": 1, "name": "Alice"}, {"id": null, "name": null}]',
 '$[*]'
 COLUMNS (
 user_id INT PATH '$.id',
 user_name VARCHAR(50) PATH '$.name'
)
) AS users
WHERE user_id IS NOT NULL;

Summary:
By following these best practices, you can ensure that your use of JSON_TABLE in
MySQL is both efficient and reliable. Handling JSON data effectively allows you to take
full advantage of MySQL’s powerful JSON functions while maintaining the performance
and scalability of your database.

JSON_TABLE function in MySQL

Performance Tuning for
JSON_TABLE Queries
When working with JSON_TABLE in MySQL, specific strategies can help improve the
efficiency and speed of your queries. Here are key techniques to enhance
performance, especially for handling JSON data using JSON_TABLE .

1. Efficient Use of Path Expressions
The path expressions you define in JSON_TABLE can have a significant impact on
performance. Complex or deep path expressions can slow down query execution as
MySQL has to navigate through multiple layers of the JSON document.

Tip: Simplify path expressions whenever possible. If your JSON structure is
deeply nested, consider flattening the data or accessing only the necessary
fields.
Example: Instead of using a deep path like:

If you can restructure the JSON or break it into steps, access the data using
simpler paths to avoid unnecessary parsing of nested elements.

COLUMNS (
 value VARCHAR(100) PATH '$.orders[0].details[0].price'
)

2. Limiting the Number of Extracted Rows
When dealing with arrays inside JSON documents, it’s crucial to control how many rows
are extracted by JSON_TABLE . Extracting too many rows at once can lead to
performance issues, especially for large datasets.

Tip: Use pagination or the LIMIT clause to extract rows in manageable chunks.
Example:

This limits the number of rows extracted, helping to optimize memory usage
and speed.

SELECT * FROM JSON_TABLE(orders.products, '$[*]'
 COLUMNS (
 product_id INT PATH '$.product_id'
)) LIMIT 10;

3. Using Filtered Path Expressions
In some cases, filtering the data directly within the JSON_TABLE query can minimize the
number of rows returned, improving performance.

Tip: Apply filtering logic directly in the JSON path expression to return only the
relevant rows.
Example: Instead of extracting all the data and then filtering:

You can apply the filter in the path expression itself:

This reduces the amount of data MySQL has to process by eliminating
irrelevant rows early on.
For details on using filtered path expressions, click here.

SELECT * FROM JSON_TABLE(orders.products, '$[*]'
 COLUMNS (
 product_id INT PATH '$.product_id',
 price DECIMAL(10, 2) PATH '$.price'
)) WHERE price > 100;

SELECT * FROM JSON_TABLE(orders.products, '$[*]?(@.price > 100)'
 COLUMNS (
 product_id INT PATH '$.product_id',
 price DECIMAL(10, 2) PATH '$.price'
));

4. Memory Management for Large JSON Documents

Processing large JSON documents with JSON_TABLE can consume significant memory
resources. If not managed carefully, this can lead to performance degradation or even
query failures.

Tip: Avoid loading large JSON documents into memory all at once. Instead,
break down the JSON document into smaller parts or use batching techniques.
Example:
If you have a large array in the JSON document, process it in batches:

By processing smaller batches, you reduce the memory footprint and avoid
overwhelming the system.

SELECT * FROM JSON_TABLE(orders.products, '$[0 to 99]'
 COLUMNS (
 product_id INT PATH '$.product_id',
 quantity INT PATH '$.quantity'
));

5. Minimizing Column Definitions in JSON_TABLE
Each column definition in JSON_TABLE requires MySQL to parse and extract data from
the JSON document. Extracting too many columns, especially if they are not necessary,
can slow down your query.

Tip: Only extract the columns you absolutely need. Unnecessary columns add
overhead without providing value.
Example: If you only need product_id and quantity , avoid adding other
columns unnecessarily:

This keeps the query lean and avoids unnecessary parsing.

COLUMNS (
 product_id INT PATH '$.product_id',
 quantity INT PATH '$.quantity'
)

6. Avoiding Complex Nested JSON Structures

Deeply nested JSON structures can significantly increase the processing time for
JSON_TABLE . MySQL has to parse through each layer of nesting, which can slow down
performance.

Tip: Where possible, flatten the JSON structure or preprocess it before storing
it in MySQL. This simplifies path expressions and reduces processing
complexity.
Example:
Instead of storing deeply nested JSON like:

Consider flattening it into simpler JSON objects:

This allows for simpler and faster queries:

{
 "orders": [
 {
 "id": 1,
 "products": [
 {
 "product_id": 101,
 "price": 10.50
 }
]
 }
]
}

{
 "order_id": 1,
 "product_id": 101,
 "price": 10.50
}

COLUMNS (
 order_id INT PATH '$.order_id',
 product_id INT PATH '$.product_id',
 price DECIMAL(10, 2) PATH '$.price'
)

7. Caching Frequent Queries
If you frequently run the same JSON_TABLE queries, implementing caching can
dramatically improve performance. Query results can be cached to avoid re-executing
the JSON_TABLE function every time the same data is requested.

Tip: Use query caching mechanisms in MySQL or your application layer to
store the results of frequently executed JSON_TABLE queries.
Example: If you frequently query product data from JSON, cache the result:

This ensures that subsequent requests for the same data retrieve the cached
result instead of reprocessing the JSON document.

SELECT SQL_CACHE * FROM JSON_TABLE(orders.products, '$[*]'
 COLUMNS (
 product_id INT PATH '$.product_id',
 price DECIMAL(10, 2) PATH '$.price'
));

Summary:
By implementing these performance tuning strategies, you can significantly improve
the efficiency of your JSON_TABLE queries in MySQL. Optimizing path expressions,
limiting row extraction, and minimizing column definitions are key steps in reducing
overhead. Additionally, managing memory effectively for large JSON documents and
using caching for frequent queries will help ensure that your application remains
performant even with complex JSON data.

JSON path expressions in
MySQL

JSON path expressions in MySQL

Understanding JSON Path
Syntax and Filters

JSON path expressions in MySQL

Working with Arrays and
Recursive Queries

JSON path expressions in MySQL

Advanced Pattern Matching
and Handling Nulls

JSON path expressions in MySQL

Combining Expressions and
Performance Optimization

